Alternative oxidase inhibitors potentiate the activity of atovaquone against Plasmodium falciparum.

نویسندگان

  • A D Murphy
  • N Lang-Unnasch
چکیده

Recent evidence suggests that the malaria parasite Plasmodium falciparum utilizes a branched respiratory pathway including both a cytochrome chain and an alternative oxidase. This branched respiratory pathway model has been used as a basis for examining the mechanism of action of two antimalarial agents, atovaquone and proguanil. In polarographic assays, atovaquone immediately reduced the parasite oxygen consumption rate in a concentration-dependent manner. This is consistent with its previously described role as an inhibitor of the cytochrome bc1 complex. Atovaquone maximally inhibited the rate of P. falciparum oxygen consumption by 73% +/- 10%. At all atovaquone concentrations tested, the addition of the alternative oxidase inhibitor, salicylhydroxamic acid, resulted in a further decrease in the rate of parasite oxygen consumption. At the highest concentrations of atovaquone tested, the activities of salicylhydroxamic acid and atovaquone appear to overlap, suggesting that at these concentrations, atovaquone partially inhibits the alternative oxidase as well as the cytochrome chain. Drug interaction studies with atovaquone and salicylhydroxamic acid indicate atovaquone's activity against P. falciparum in vitro is potentiated by this alternative oxidase inhibitor, with a sum fractional inhibitory concentration of 0.6. Propyl gallate, another alternative oxidase inhibitor, also potentiated atovaquone's activity, with a sum fractional inhibitory concentration of 0.7. Proguanil, which potentiates atovaquone activity in vitro and in vivo, had a small effect on parasite oxygen consumption in polarographic assays when used alone or in the presence of atovaquone or salicylhydroxamic acid. This suggests that proguanil does not potentiate atovaquone by direct inhibition of either branch of the parasite respiratory chain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of atovaquone and other inhibitors on Pneumocystis carinii dihydroorotate dehydrogenase.

Dihydroorotate dehydrogenase (DHOD) is a pyrimidine biosynthetic enzyme which is usually directly linked to the mitochondrial respiratory chain. Antimalarial naphthoquinones such as atovaquone (566c80) inhibit malarial DHOD by inhibiting electron transport. Since atovaquone also has therapeutic activity against Pneumocystis carinii, the P. carinii DHOD may also be an important drug target. Orga...

متن کامل

Biguanide-atovaquone synergy against Plasmodium falciparum in vitro.

The synergistic potential of a range of biguanides, their triazine metabolites, tetracyclines, and pyrimethamine in combination with atovaquone has been assessed. All five biguanides tested interacted synergistically with atovaquone against Plasmodium falciparum in vitro. All of the other compounds tested were either additive or antagonistic.

متن کامل

In vitro and in vivo properties of ellagic acid in malaria treatment.

Malaria is one of the most significant causes of infectious disease in the world. The search for new antimalarial chemotherapies has become increasingly urgent due to the parasites' resistance to current drugs. Ellagic acid is a polyphenol found in various plant products. In this study, antimalarial properties of ellagic acid were explored. The results obtained have shown high activity in vitro...

متن کامل

Ferrocene-chloroquine analogues as antimalarial agents: in vitro activity of ferrochloroquine against 103 Gabonese isolates of Plasmodium falciparum.

The in vitro activities of ferrochloroquine, chloroquine, quinine, mefloquine, halofantrine, amodiaquine, primaquine, atovaquone and artesunate were evaluated against Plasmodium falciparum isolates from children with uncomplicated malaria from Libreville (Gabon), using an isotopic, micro, drug susceptibility test. The IC(50) values for ferrochloroquine were in the range 0.43-30.9 nM and the geo...

متن کامل

Plasmodium falciparum: interaction of shikimate analogues with antimalarial drugs.

The shikimate pathway for aromatic biosynthesis presents a target for antimalarial drug development as this pathway is absent from animals. This study extends previous work on inhibitors of the shikimate pathway, by examining their interaction with the antimalarial drugs pyrimethamine and atovaquone. Combinations of atovaquone with several shikimate analogues exhibited synergistic effects. Thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 43 3  شماره 

صفحات  -

تاریخ انتشار 1999